Development of patient-specific phantoms for verification of stereotactic body radiation therapy planning in patients with metallic screw fixation

نویسندگان

  • Dongryul Oh
  • Chae-Seon Hong
  • Sang Gyu Ju
  • Minkyu Kim
  • Bum Yong Koo
  • SungBack Choi
  • Hee Chul Park
  • Doo Ho Choi
  • Hongryull Pyo
چکیده

A new technique for manufacturing a patient-specific dosimetric phantom using three-dimensional printing (PSDP_3DP) was developed, and its geometrical and dosimetric accuracy was analyzed. External body contours and structures of the spine and metallic fixation screws (MFS) were delineated from CT images of a patient with MFS who underwent stereotactic body radiation therapy for spine metastasis. Contours were converted into a STereoLithography file format using in-house program. A hollow, four-section PSDP was designed and manufactured using three types of 3DP to allow filling with a muscle-equivalent liquid and insertion of dosimeters. To evaluate the geometrical accuracy of PSDP_3DP, CT images were obtained and compared with patient CT data for volume, mean density, and Dice similarity coefficient for contours. The dose distribution in the PSDP_3DP was calculated by applying the same beam parameters as for the patient, and the dosimetric characteristics of the PSDP_3DP were compared with the patient plan. The registered CT of the PSDP_3DP was well matched with that of the real patient CT in the axial, coronal, and sagittal planes. The physical accuracy and dosimetric characteristics of PSDP_3DP were comparable to those of a real patient. The ability to manufacture a PSDP representing an extreme patient condition was demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement of the immobilisation efficacy of a head fixation system

Background: In order to assign appropriate planning target volume (PTV) margins, each centre should measure the patient positioning deviations for their set-up techniques. At the Royal Marsden Hospital, UK, a conformal shell (cast) system is used when a stereotactic frame is not suitable. In this paper, we report on a series of measurements with the aim of obtaining the systematic and random ...

متن کامل

Prostate-specific antigen kinetics after hypofractionated stereotactic body radiotherapy for localized prostate cancer

Background: stereotactic body radiotherapy (SBRT) has emerged as an effective treatment for localized prostate cancer. However, prostate-specific antigen (PSA) kinetics after SBRT has not been well characterized. The objective of the current study is to analyze the rate of PSA decline and PSA nadir following hypofractonated SBRT in localized prostate cancer. Materials and Methods: From 2008...

متن کامل

A Specific Patient Quality Assurance (PSQA) procedure for a Co-60 source based High Dose Rate Brachytherapy

Introduction: In radiation therapy, accurate dose determination and precise dose delivery to the tumor are directly associated with better treatment outcomes in terms of higher tumor control and lower post radiation therapy complications. The current study aims the development and clinical application of the Patient Specific Quality Assurance (PSQA) procedures for nasopharyngea...

متن کامل

Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy

Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D...

متن کامل

Point Dose Measurement for Verification of Treatment Planning System using an Indigenous Heterogeneous Pelvis Phantom for Clarkson, Convolution, Superposition, and Fast Superposition Algorithms

Background: Nowadays, advanced radiotherapy equipment includes algorithms to calculate dose. The verification of the calculated doses is important to achieve accurate results. Mostly homogeneous dosimetric phantoms are available commercially which do not mimic the actual patient anatomy; therefore, an indigenous heterogeneous pelvic phantom mimicking actual human pelvic region has been used to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017